Progress on the Pulsed Fission-Fusion Propulsion System Concept

Robert B. Adams, Ph.D.
ER24/Propulsion Research and Technology Branch
George C. Marshall Space Flight Center
National Aeronautics and Space Administration

Jason Cassibry, Ph.D., Kevin Schillo
Propulsion Research Center
Department of Mechanical and Aerospace Engineering
University of Alabama in Huntsville
PuFF Concept
Introduction to PuFF

- Magnetic nozzle coils
- Magnetic field lines
- Lithium liner and radiation shield
- UF6 fuel
- D-T fuel
- Cathode
Operation of a Z Pinch

Vaporized Wire Array

Evacuated Chamber

Plasma Cylinder

B, Magnetic Flux

Anode

Cathode
Heating Mechanisms Included in Model

- Bremmstrahlung and Cyclotron Radiation
- Axial and Radial Thermal conduction
- Fissionable liner
- Magnetic Field Lines
- DT FRC Target Plasma
- Neutron induced Fast fission reactions
- Fusion heating power
- Fission heating power
Fusion Power Balance

- Parameter space for ignition
- Greatly broadened with embedded magnetic field
- Marginally improved with 6Li and thorium liners
- Significantly enhanced with uranium liners (235U and 238U)
Parameters within net Power Increase

◆ Choose $\rho R = 10^{-5}$ at 15 keV.
◆ Let $R = 1$ mm, thickness of uranium liner is 5 mm, length of target is 2 cm
◆ Density of DT target is 0.1 kg/m3
◆ Total energy in DT target is only \sim5 kJ, 1% of Charger 1 stored energy
Our Approach: Solve Maxwell's Equations Coupled to Multifluid (Ions, Electrons, Neutrals) Equations of Motion

Maxwell’s Equations

- Solve with Smooth Particle Electromagnetic Variant of Finite-Difference Time Domain (FDTD) method
- FDTD well documented, highly accurate grid-based method for analyzing the time evolution of electric and magnetic fields, utilized in PIC codes
- Can interpolate charged fluid particles to grid to model conductivity or charge and current density

Multifluid Equations of Motions

- Solve with Smooth Particle Hydrodynamics (SPH)
- Gridless Lagrangian technique
- Vacuum/plasma boundary well defined
- Leverage same engine as Maxwell Equation Solver

Both methods yield to ‘vectorized’ coding, making multiprocessor (parallel) computing easy
What is SPH?

- Numerical method for approximating probability densities over a domain of particles.
- Currently used mostly in hydrodynamic modeling and CG effects in film and video games.
How does SPH work?

Integral interpolant:

\[A_I(r) = \int A(r')W(r - r', h)dr' \]

- \(A \) – quantity measured (density, temperature, etc.)
- \(W \) – differentiable kernel function
- \(dr' \) – volume differential
- \(h \) – smoothing length.

Summation over mass elements:

\[A_S(r) = \sum_b m_b A_b \frac{\rho_b}{\rho} W(r - r_b, h) \]

Similar to density probability calculations. How quantities are accurately calculated with a small particle domain.
Equations of motion (completed)

\[\frac{\partial}{\partial t} n_e + \nabla \cdot \mathbf{u}_e = 0 \]
\[\frac{\partial}{\partial t} n_i + \nabla \cdot \mathbf{u}_i = 0 \]

\[n_e m_e \frac{\partial}{\partial t} \mathbf{u}_e + \nabla p_e + e n_e (\mathbf{E} + \mathbf{u}_e \times \mathbf{B}) = \cdots \]

\[n_i m_i \frac{\partial}{\partial t} \mathbf{u}_i + \nabla p_i - Z e n_i (\mathbf{E} + \mathbf{u}_i \times \mathbf{B}) = \cdots \]

\[\frac{3}{2} n_e k T_e + p_e \nabla \cdot \mathbf{u}_e = -\pi_e : \nabla \mathbf{u}_e - \nabla h_e - (\mathbf{u}_e - \mathbf{u}_i) \cdot \mathbf{R}_e - Q_i \]

\[\frac{3}{2} n_i k T_i + p_i \nabla \cdot \mathbf{u}_i = -\pi_i : \nabla \mathbf{u}_i - \nabla h_i - Q_i \]

Transport effects, which can be based on nonequilibrium distribution functions (kappa and power law)

\[R_a \equiv \int m_\alpha \mathbf{w} \sum_{\beta} C_{\alpha \beta} d\mathbf{w} \]
\[R_a \approx -\sum_{\beta} m_\alpha n_\alpha (\mathbf{V}_\alpha - \mathbf{V}_\beta) \langle \mathbf{V}_{\alpha \beta} \rangle \]

\[p_\alpha \equiv \frac{1}{3} m_\alpha n_\alpha \langle \mathbf{w}^2 \rangle \]
\[\pi_i \equiv n_\alpha m_\alpha \langle \mathbf{w} \mathbf{w} \rangle - p_\alpha \mathbf{I} \]
\[h_\alpha \equiv \frac{1}{2} n_\alpha m_\alpha \langle \mathbf{w}^2 \mathbf{w} \rangle \]
\[Q_a \equiv \int \frac{1}{2} m_\alpha w_\alpha^2 \sum_{\beta} C_{\alpha \beta} d\mathbf{w} \]
Initial Pulsed Nozzle Model

- Test thermal expansion of gas nozzle with various initial conditions
 - Nozzle geometry
 - Gas
 - Temperature
 - Density
 - Radius
 - Length
 - Composition
- Lays ground work and expectations for magnetic nozzle
Preliminary results
Preliminary results
Preliminary results
Preliminary results
Preliminary results
NIAC Phase I Goals
Crewed Mars Mission Concept

- Deuterium-Tritium Tank (2.4 m dia. - 4 pcs)
- SP-100 Reactor
- Lithium 6 Tank (4.8 m long x 2.6 m dia. - 4 pcs)
- Two-Sided Crew/Avonics Radiators (176 m² total area)
- Two-Sided Med. Temp. Radiators (608 m² total area)
- Two-Sided High Temp. Radiators (1910 m² total area)
- ISRU
- Transhab
- Lander
- Surface Habitat

- Stacked Capacitor Module (2) (10 m long x 3.6 m x 7.2 m - 8 pcs)
- Z-Plunge Nozzle
- Lithium Hydride Radiation Shield (25 m thick)
- SMES Envelope (1.8 m x 1.8 m x 2.4 m)
- 4-Pod RCS 700 lbf MR 80 B 3 Hydrazine Thrusters, RCS Tank (85 m dia.) and RCS Helium Pressurant Tank (64 m dia.) (6 pcs - 4 Aft and 4 Forward)
Mission Concepts

<table>
<thead>
<tr>
<th></th>
<th>Mars 90</th>
<th>Mars 30</th>
<th>Jupiter</th>
<th>550 AU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outbound Trip Time (days)</td>
<td>90.2</td>
<td>39.5</td>
<td>456.8</td>
<td>12936</td>
</tr>
<tr>
<td>Return Trip Time (days)</td>
<td>87.4</td>
<td>33.1</td>
<td>521.8</td>
<td>n/a</td>
</tr>
<tr>
<td>Total Burn Time (days)</td>
<td>5.0</td>
<td>20.2</td>
<td>6.7</td>
<td>11.2</td>
</tr>
<tr>
<td>Propellant Burned (mT)</td>
<td>86.3</td>
<td>350.4</td>
<td>115.7</td>
<td>194.4</td>
</tr>
<tr>
<td>Equivalent DV (km/s)</td>
<td>27.5</td>
<td>93.2</td>
<td>36.1</td>
<td>57.2</td>
</tr>
</tbody>
</table>

Figure 3 Mars 90 Day Transfer Trajectories

- **Engine**
 - $Isp = 19,400$ sec
 - $T = 38$ kN
 - 10 Hz pulse freq.

- **Vehicle**
 - $M_{dry} = 552$ mT
 - $M_{pay} = 150$ mT
 - 30% MGA

Polsgrove, T. et al. Design of Z-Pinch and Dense Plasma Focus Powered Vehicles, 2010 AIAA Aerospace Sciences Meeting
Mating SPFMaX and MCNP

◆ SPFMax gives
 • Ability to model 3d effects
 • Can propagate magnetic fields in vacuum
 • Easily editable

◆ MCNP
 • Track neutron life, fission reactions
 • Flexible geometries

◆ Second half of NIAC is to run codes concurrently
 • synchronize neutron population vs. time
 • Optimize energy output
 - As function of geometry
 - As function of composition
 – Mix of UF6, D-T
 – Lithium liner thicknesses
Single turn Magnetic Nozzle

- Gasdynamic nozzle performance to be compared with magnetic nozzle to assess loss mechanisms in magnetic nozzles, e.g.
 - Field/plasma instabilities
 - Plasma detachment

Direction of current
NIAC Phase II Experimental Options
A test facility for high power and thermonuclear fusion propulsion concepts, astrophysics modeling, radiation physics

Located in the UAH Aerophysics Lab at Redstone

The highest instantaneous pulsed power facility in academia – 572 kJ (1 TW at 100 ns)
Methodology

- Incremental improvements in experimental capability
- Benchmark model with experimental data
- Can also run any experiments below with lower power systems
- Looking for comments and suggestions here!

![Diagram showing the experimental roadpath process](image)

- **Li wire**
- **Deuterated Polyethylene**
- **D-D slush**
- **Implosion**
- **Neutron flux**
- **Plasma stability**
- **Solid U\textsubscript{238}**
 - D-T slush
- **Solid U\textsubscript{238}**
 - D-Li solid
Long Range Plans

◆ Charger II

• Construct breadboard PuFF system capable of 10-20 Hz operation
 - Upgrade to flight weight hardware – NASA
 - Optimize pulse for maximum power output – DOE
 - Astrodynamics, radiation protection, other research goals - Various